傳感器在功率模塊中的應(yīng)用
運(yùn)行參數(shù)監(jiān)測已成為功率模塊的一個組成部分。在功率模塊中,溫度傳感器已或多或少地成為標(biāo)準(zhǔn)配置,甚至連電流傳感器也正越來越廣泛被采用。事實上,與外置傳感器解決方案相比,集成傳感器是更具有成本效益的解決方案,它為用戶帶來附加的保護(hù)功能,同時減小了模塊的體積。
電流傳感器
如果一個功率模塊配備了電流傳感器,其信號主要是用作輸出電流控制(例如:在傳動應(yīng)用中),并且還可以起到保護(hù)器件的作用。電機(jī)控制的需求確定電流傳感器的特性。在許多情況下,故障(包括溫度漂移)都必須低于1 ... 2%。對溫度(-40℃~125℃)和低電流損耗的要求是通過功率模塊自身來設(shè)定的。器件保護(hù)功能設(shè)定過流能力(最大短路電流為額定電流的5倍),上限截止頻率(> 100kHz)。
對于中低功率器件,使用電流分流器是一個精確且低成本高效率的解決方案。電流限額約為30A~40A。不足之處是有額外的功率損耗,并且如果分流器用于測量發(fā)射極電流,將會失去隔離且IGBT柵極信號中存在干擾。
對于高性能和大功率半導(dǎo)體模塊,一般使用電氣隔離的傳感器。無補(bǔ)償電流的純霍爾效應(yīng)傳感器在誤差和溫度穩(wěn)定性方面的性能較差。傳感器可用在用戶指定的模塊中,因為這些模塊中的需求定義的很清楚。具有高線性度和低溫度漂移的傳感器與補(bǔ)償電流一起運(yùn)作。該電流抵消傳感器核心內(nèi)測量電流的磁場。補(bǔ)償電流放大器的控制信號由霍爾效應(yīng)、磁場或磁阻探頭提供。
對于像賽米控SKiiP系統(tǒng)這樣的智能功率模塊(IPM),由于最終應(yīng)用對于高性能的要求,使用高精度的傳感器是最合適的。在最終應(yīng)用中,傳感器直接集成在模塊的外殼中,環(huán)繞主端子以節(jié)省空間(圖1)。用于信號監(jiān)測和轉(zhuǎn)換的評估電路是驅(qū)動器電路的一部分。特殊設(shè)計的ASIC芯片保證高集成度和高可靠性,這在采用外部傳感器的方案中是難以實現(xiàn)。
在IPM內(nèi)部,電流監(jiān)測電路與驅(qū)動器電路直接相連。它可以在最短時間內(nèi)檢測到外部短路,并且可在2~3μs內(nèi)關(guān)斷功率半導(dǎo)體。未來,這一特性將變得越來越重要,因為與過去的IGBT允許10 μs的短路時間相比,新一代IGBT只允許6 μs的短路時間。
電壓源逆變電路AC端子處的電流傳感器不能檢測到逆變橋內(nèi)的短路。這里,通過監(jiān)測VCE(sat),處于開態(tài)的半導(dǎo)體的斜率電阻用于保護(hù)目的。該方法對于短路保護(hù)是足夠的,但并不適合電流的測量。
圖1:AC端子集成了電流傳感器的SKiiP功率模塊
對于器件保護(hù)而言,有幾種溫度傳感器可供使用。這些傳感器具有負(fù)溫度系數(shù)(NTC)或正溫度系數(shù)(PTC)。標(biāo)準(zhǔn)工業(yè)模塊中使用最多的是NTC傳感器。賽米控使用自己的硅芯片傳感器SKCS,該傳感器為PTC特性、具有線性度高和誤差小的特點(diǎn)。配合適合的監(jiān)測電路,諸如SKiiP的IPM提供一個模擬輸出信號用于溫度測量和故障率低于5°C的保護(hù)功能。
傳感器在模塊內(nèi)的位置在很大程度上影響其溫度保護(hù)的能力。事實上,在這方面?zhèn)鞲衅鞯奈恢帽葌鞲衅鞯恼`差更重要。如果硬件斷路電平由驅(qū)動器或控制電路設(shè)置,則尤為如此。
圖2:功率模塊內(nèi)有關(guān)不同溫度傳感器位置的案例研究;模型和溫度模擬
對不同位置傳感器所帶來的影響進(jìn)行了一項研究。功率模塊的一個模型如圖 2所示。該模塊沒有銅底板,安裝在一個風(fēng)冷鋁散熱器上。不同傳感器的熱耦合不同,從傳感器A)在同一銅層上與功率半導(dǎo)體直接相連,到傳感器B)和C)在模塊內(nèi)不同位置進(jìn)行隔離,到放置在散熱器上模塊旁的傳感器D)。由于不同的熱耦合,每個傳感器有不同的結(jié)( j )到傳感器(r)熱阻Rth(j-r)。
用于過熱保護(hù)的斷路電平可在準(zhǔn)靜態(tài)條件為每個傳感器設(shè)定。例如,如果Tj 不能超過140°C,則所研究案例系統(tǒng)的“過熱關(guān)斷”斷路電平將從120°C(傳感器A)、110°C(傳感器B)、100°C(傳感器C)至70°C(傳感器D)不等。源和傳感器之間的耦合越好,冷卻系統(tǒng)的影響越低。這是集成解決方案的一個很大的優(yōu)勢。
不過,對于其他冷卻條件(散熱材料和根基厚度、冷卻介質(zhì)、導(dǎo)熱硅脂厚度),斷路電平不得不設(shè)定為新的值。這使得IPM的制造商很難為任意給定的應(yīng)用將過熱斷路電平設(shè)定至一個適當(dāng)值。為此,傳感器信號應(yīng)由外部上位控制器進(jìn)行監(jiān)測,并且如果需要的話,熱保護(hù)電平應(yīng)與冷卻系統(tǒng)相匹配?! 轱@示冷卻系統(tǒng)所產(chǎn)生的影響,導(dǎo)熱硅脂層的厚度由原來的50 µm增加至100 µm。由于傳感器A與功率半導(dǎo)體有著最佳的熱耦合,因此可以看出對Rth(j-r) 的影響最低,其值只增加了3%。 傳感器B和C的Rth(j-r) 值增加了 7…8%。冷卻系統(tǒng)對傳感器D的Rth(j-r)影響最大,其值的增加超過 25%?! ×硪粋€問題是溫度傳感器是否能夠在短時過載的情況下保護(hù)功率半導(dǎo)體。每個傳感器對結(jié)溫升高做出反應(yīng)的時間存在延遲,該延遲與傳感器的位置相關(guān)。這一特性由熱阻抗Zth(j-r)來描述。它的表現(xiàn)與期望的不一致(見圖3)。Zth(j-r)與結(jié)到散熱器的熱阻抗Zth(j-s)(直接在芯片下)的比較表明 在一秒鐘之后系統(tǒng)的結(jié)-散熱器熱阻抗已達(dá)到穩(wěn)態(tài)條件,而系統(tǒng)的結(jié)-傳感器則需要100秒才能到達(dá)穩(wěn)態(tài)。其中的原因是散熱器內(nèi)部存在熱擴(kuò)散。
圖3:結(jié)( j )到不同位置傳感器(rX )和散熱器的熱阻抗
表1:有關(guān)不同位置溫度傳感器是否適合于保護(hù)功率半導(dǎo)體的比較。
微信聯(lián)盟:,各細(xì)分行業(yè)微信群:點(diǎn)擊這里進(jìn)入。
鴻達(dá)安視:水文水利在線監(jiān)測儀器、智慧農(nóng)業(yè)在線監(jiān)測儀器 金葉儀器: 氣體/顆粒物/煙塵在線監(jiān)測解決方案
西凱昂:SMC氣動元件、力士樂液壓元件、倍加福光電產(chǎn)品等 山東諾方: 顆粒物傳感器、粉塵濃度傳感器
深圳金瑞銘:RFID射頻識別、智能傳感器等物聯(lián)網(wǎng)解決方案 北京英諾艾智: 容錯服務(wù)器、邊緣計算解決方案
評論排行