上傳時(shí)間:2012年2月24日 關(guān)鍵詞:CMOS、雙極型器件
  文中將以高性能超聲波設(shè)備為例,探討如何平衡噪聲、功耗、芯片占位面積以及集成度等問(wèn)題?! 」脑谠S多電池供電應(yīng)用中都非常重要。在這類應(yīng)用中,CMOS工藝是個(gè)極好的選擇。但是,漏電與性能之間的平衡也很關(guān)鍵,決定著技術(shù)的選擇。此外,在這類應(yīng)用中,混合信號(hào)集成也是一項(xiàng)重要要求?! 「咝褂靡恍┓庋b技術(shù)可滿足在單個(gè)集成電路中實(shí)現(xiàn)大量功能的需求,比如在支持密集數(shù)字功能并同時(shí)要求低噪聲時(shí)。這種彼此相悖的需求有時(shí)也可采用多芯片模塊輕松滿足?! ”疚倪€將探討醫(yī)療設(shè)備的未來(lái)發(fā)展趨勢(shì),包括生物信號(hào)的直接測(cè)量與自供電設(shè)備等。這些趨勢(shì)將推動(dòng)現(xiàn)有工藝技術(shù)的改良,以滿足能源采集特性和其它非標(biāo)準(zhǔn)傳感器功能。模擬性能  首先以超聲波設(shè)備為例來(lái)探討模擬性能需求。通過(guò)該范例,本文將介紹如何在性能、功耗、尺寸以及集成度之間進(jìn)行權(quán)衡,并檢測(cè)雙極性與CMOS工藝技術(shù)的適用性。圖1是典型超聲波機(jī)器的系統(tǒng)方框圖,展示了傳輸與接收兩個(gè)部分。這兩個(gè)部分負(fù)責(zé)驅(qū)動(dòng)傳感器與數(shù)字處理部分(未顯示),從而構(gòu)成完整的超聲波設(shè)備。
圖1:超聲波系統(tǒng)框圖
圖1:超聲波系統(tǒng)框圖
    在設(shè)計(jì)這種類型的接收模塊時(shí)需要考慮的問(wèn)題包括輸入噪聲、線性度、增益以及功耗。給定封裝尺寸的接收通道數(shù)量決定了集成度。從傳感器接收到的信號(hào)可支持超過(guò)100dB的振幅變化。因此,低級(jí)信號(hào)(約10uV)端上的輸入噪聲與大型輸入信號(hào)(約1V)的線性度都是非常重要的性能參數(shù)。要適應(yīng)這種大的動(dòng)態(tài)范圍,可通過(guò)電壓控制衰減器(VCA)和可編程增益放大器(PGA)調(diào)節(jié)通道增益。圖3顯示了幾種PGA設(shè)置下,通過(guò)器件的總體增益隨VCA上電壓變化的情況。 
圖2:圖1中執(zhí)行接收功能部分的詳細(xì)方框圖
圖2:圖1中執(zhí)行接收功能部分的詳細(xì)方框圖
    
圖3:接收模塊增益隨電壓控制變化的曲線圖
圖3:接收模塊增益隨電壓控制變化的曲線圖
  下面將比較雙極性放大器與CMOS放大器的性能。雙極性器件與CMOS器件都可用于設(shè)計(jì)支持4mA偏置電流的開(kāi)環(huán)放大器模塊,實(shí)現(xiàn)20dB增益。這里把(TI內(nèi)部的)BiCMOS工藝為目標(biāo)工藝技術(shù)。  表1是用于放大器的雙極性器件和CMOS器件的尺寸比較。CMOS器件較大的尺寸及伴隨的輸入電容嚴(yán)重限制了放大器的輸入帶寬。在本例中,采用雙極性放大器可實(shí)現(xiàn)低偏置電流下的低噪聲。但使用雙極性器件可能會(huì)有基電流噪聲,而這在CMOS器件中則可以忽略不計(jì)。該基電流噪聲的幅度取決于傳感器的阻抗和系統(tǒng)具體的實(shí)施情況?! ?center>表1:雙極性器件和COMS器件的尺寸比較
表1:雙極性器件和COMS器件的尺寸比較 
上一頁(yè) 1  2   下一頁(yè)