2024年及未來技術(shù)趨勢預(yù)測
亞馬遜首席技術(shù)官Werner Vogels
在歷史的長河中,人類一直在不斷開發(fā)各種工具和系統(tǒng),增強(qiáng)自身的能力。無論是印刷術(shù)還是流水線,這些創(chuàng)新拓寬了我們的能力,造就新的工作和職位,我們也在不斷調(diào)整自己來適應(yīng)這些變革。這種變革的速度在過去一年急劇加快。云技術(shù)、機(jī)器學(xué)習(xí)以及生成式AI變得更加普及,從寫電子郵件到開發(fā)軟件,甚至是早期的癌癥篩查,這些技術(shù)幾乎影響到我們生活的方方面面。未來幾年,我們將迎來更多產(chǎn)業(yè)創(chuàng)新,推動(dòng)技術(shù)的廣泛應(yīng)用,幫助我們跟上日益加快的生活節(jié)奏,而這一切都將始于生成式AI。
生成式AI將逐漸具備文化意識
基于文化多樣性數(shù)據(jù)訓(xùn)練的大語言模型(LLM),將能夠更細(xì)膩地理解人類體驗(yàn)以及復(fù)雜的社會(huì)挑戰(zhàn)。這種"文化流利度"有望讓全球用戶更方便地使用應(yīng)用生成式AI。
文化的影響體現(xiàn)在方方面面,從我們講的故事、吃的食物、穿著打扮,到價(jià)值觀、禮儀與偏見,以及我們處理問題和做出決策的方式。文化是我們在社會(huì)群體中存在的基礎(chǔ),為我們的行為和信仰提供了規(guī)則和指南,而這些會(huì)隨我們所在的環(huán)境和接觸的對象而變化。
同時(shí),這些差異有時(shí)也會(huì)導(dǎo)致混淆和誤解。例如,在日本,吃面時(shí)發(fā)出的大聲吸湯的聲音被視為享受美味的表現(xiàn),但在其他文化中則被視為不禮貌的行為。在印度的傳統(tǒng)婚禮上,新娘可能會(huì)穿著精心設(shè)計(jì)、色彩鮮艷的藍(lán)嘎(lehenga,印度女性的傳統(tǒng)服飾);而在西方,白色婚紗才是傳統(tǒng);在希臘,人們會(huì)為了好運(yùn)往婚紗上吐口水。作為人類,我們已習(xí)慣跨越多種文化展開協(xié)作,我們能夠?qū)⑦@些信息置于特定語境中,調(diào)整解讀方式并做出適當(dāng)?shù)幕貞?yīng)。
所以,為什么不對我們在日常生活中使用和依賴的技術(shù)有同樣的期望呢?在未來幾年,文化將在技術(shù)的設(shè)計(jì)、部署和使用方式中發(fā)揮關(guān)鍵作用,其中最顯著的影響將體現(xiàn)在生成式AI中。
基于大語言模型的系統(tǒng)要觸達(dá)全球用戶,它們需要達(dá)到與人類自身相似的文化流利度。佐治亞理工學(xué)院的研究人員在今年早些時(shí)候發(fā)布的一篇論文中證實(shí),即使給一個(gè)大語言模型提供了明確提及伊斯蘭禱詞的阿拉伯語提示詞,它生成的回復(fù)仍然是建議與朋友一起飲酒,這在伊斯蘭文化中顯然是不當(dāng)之舉。這很大程度上與可用的訓(xùn)練數(shù)據(jù)有關(guān)。用于訓(xùn)練許多大語言模型的Common Crawl數(shù)據(jù)集大約有46%的內(nèi)容是英語,而且無論是哪種語言,更大比例的內(nèi)容以西方文化為基礎(chǔ)(明顯傾向于美國)。而如果使用專門針對阿拉伯語生成的預(yù)訓(xùn)練模型并使用阿拉伯語進(jìn)行預(yù)訓(xùn)練,提供相同的提示詞,就能生成更符合相應(yīng)文化背景的回復(fù),比如建議喝茶或咖啡。非西方語境的大語言模型在過去幾個(gè)月里已經(jīng)開始出現(xiàn):例如基于阿拉伯語和英語數(shù)據(jù)訓(xùn)練的Jais、中英雙語模型Yi-34B,以及使用大量日語網(wǎng)絡(luò)語料庫進(jìn)行訓(xùn)練的Japanese-large-lm。這些跡象表明,具有文化準(zhǔn)確性的非西方模型將把生成式AI帶給數(shù)億人,并影響從教育到醫(yī)療的方方面面。
需要注意的是,語言和文化并不相同。一個(gè)模型即使能夠提供完美的翻譯,也并不代表其具備文化意識。隨著大量的歷史和經(jīng)驗(yàn)被嵌入到模型中,我們將看到大語言模型開始形成更廣泛的全球化視角。正如人類從辯論探討和思想交流中學(xué)習(xí)一樣,大語言模型也需要類似的機(jī)會(huì)來拓展它們的視野并理解文化。在這種文化交流中,有兩個(gè)研究領(lǐng)域?qū)l(fā)揮關(guān)鍵作用:一是基于AI反饋的強(qiáng)化學(xué)習(xí)(RLAIF),即一個(gè)模型可以吸收另一個(gè)模型的反饋,不同的模型之間可以相互影響,并根據(jù)這些影響更新其對不同文化概念的理解;二是通過多智能體辯論進(jìn)行協(xié)作,即一個(gè)模型的多個(gè)實(shí)例生成響應(yīng),之后針對每個(gè)響應(yīng)的有效性及背后的推理展開辯論,最后基于辯論過程得出一致的響應(yīng)。這兩個(gè)研究領(lǐng)域都能夠降低訓(xùn)練和微調(diào)模型所需的人力成本。
大語言模型在相互之間交互和學(xué)習(xí)的過程中,將從不同文化的視角獲得對復(fù)雜社會(huì)挑戰(zhàn)的更為細(xì)致的理解。這些進(jìn)步還將確保模型提供更具韌性和技術(shù)準(zhǔn)確性的反饋,涵蓋如科技等廣泛的領(lǐng)域。該影響將是深遠(yuǎn)的,并在不同地理區(qū)域、社區(qū)和不同時(shí)代中為人們所感知。
女性科技終于崛起
隨著女性科技(FemTech)投資的激增、混合醫(yī)療的發(fā)展以及豐富的數(shù)據(jù)讓診斷和治療效果不斷改善,女性醫(yī)療健康領(lǐng)域迎來一個(gè)拐點(diǎn)。女性科技的崛起不僅將造福女性,還將推動(dòng)整個(gè)醫(yī)療系統(tǒng)的發(fā)展。
機(jī)器人技術(shù)學(xué)徒計(jì)劃(Mechatronics and Robotics Apprenticeship),以及Amazon Cloud Institute等項(xiàng)目。所有這些項(xiàng)目都讓處于職業(yè)生涯不同階段的學(xué)習(xí)者能夠獲得他們需要入職熱門職位的精準(zhǔn)技能,而無需承擔(dān)傳統(tǒng)多年制項(xiàng)目的承諾。
需要明確的是,這個(gè)概念并非沒有先例。例如電工、焊工和木匠等熟練工種,他們的大部分技能都不是在課堂上學(xué)到的。他們從初學(xué)者到成為學(xué)徒,再成長為熟練工,甚至可能成為技術(shù)專家。這樣的學(xué)習(xí)是在工作中持續(xù)進(jìn)行的,而且有明確的技能提升路徑。這種終身教育的方式——學(xué)習(xí)并保持好奇心,對個(gè)人和企業(yè)而言都大有脾益。
所有這一切并不意味著傳統(tǒng)學(xué)位會(huì)消失。這不是一個(gè)"非此即彼"的情況,而是關(guān)乎選擇。在科技領(lǐng)域,傳統(tǒng)的學(xué)術(shù)學(xué)習(xí)仍然至關(guān)重要。但在許多其他行業(yè)中,技術(shù)的影響已經(jīng)超越了傳統(tǒng)教育系統(tǒng)。為了滿足商業(yè)需求,我們將迎來一個(gè)行業(yè)主導(dǎo)的教育機(jī)會(huì)新時(shí)代,而這將是不容忽視的潮流。
微信聯(lián)盟:AI微信群、機(jī)械電子微信群、機(jī)器人微信群、人工智能微信群,各細(xì)分行業(yè)微信群:點(diǎn)擊這里進(jìn)入。
鴻達(dá)安視:水文水利在線監(jiān)測儀器、智慧農(nóng)業(yè)在線監(jiān)測儀器 金葉儀器: 氣體/顆粒物/煙塵在線監(jiān)測解決方案
西凱昂:SMC氣動(dòng)元件、力士樂液壓元件、倍加福光電產(chǎn)品等 山東諾方: 顆粒物傳感器、粉塵濃度傳感器
深圳金瑞銘:RFID射頻識別、智能傳感器等物聯(lián)網(wǎng)解決方案 北京英諾艾智: 容錯(cuò)服務(wù)器、邊緣計(jì)算解決方案
評論排行